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Abstract. Until recently, no Salem numbers were known of trace beleiv In
this paper we provide several examples of tra& including an explicit infinite
family. We establish that the minimal degree for a Salem rema trace—2 is
20, and exhibit all Salem numbers of degree 20 and tra2elndeed there are
just two examples.

We also settle the closely-related question of the mininegireled of a totally
positive algebraic integer such that its trace<i2d — 2. This minimal degree is
10, and there are exactly three conjugate sets of degreed.@rase 18. Their
minimal polynomials enable us to prove that all except fivajugate sets of
totally positive algebraic integers have absolute traeaigr than 160.

We end with a speculative section where we prove that, if glsipolynomial
with certain properties exists, then the trace problemdtalty positive algebraic
integers can be solved.

1 Introduction

A Salem number is a real algebraic integer greater than 1 whose other cargscall
lie in the closed dis¢z] < 1, with at least one on the circ|gl = 1. Here we settle the
question: what is the smallest possible degree for a Salenbauof trace-27?

The problem is related to that of finding totally positiveethgaic integers of degree
d and trace @ — 2. For suppose that

f(x)=xd—(2d—2)xd"1+...

is the minimal polynomial of a totally positive algebraiddger. Then we apply the
transformatiorx = z+ 1/z+ 2, and clear denominators, to produce a reciprocal poly-
nomial

F(z =29+272% ... 42241

which is the minimal polynomial of an algebraic integer ofoze 21 and trace-2. The
reverse transformation is a little more complicatedFifz) /2, replace eacll + 1/Z



by Tj(x—2), whereT; is the j-th Chebyshev polynomial, defined By(z+1/z) =
Z/+1/2Z). Any roots of f(x) in the interval O< X < 4 are mapped to pairs of roots of
F(2) on the unit circle. Any roots of (x) in the intervalx > 4 are mapped to pairs
of reciprocal real positive roots ¢f(z). We see that the problem of finding all Salem
numbers of degreed?and trace—-2 is equivalent to that of finding all totally positive
algebraic integer§ of degreed and trace @ — 2 such that both (ip > 4; and (i) all
other conjugates d are in the interval G< x < 4.

The similar problem for trace-1 was settled some time ago: the smallest degree
for a Salem number of tracel is 8, and there is just one such Salem number, having
minimal polynomial

P47 P42 -5 42 - P1z+1 .

In [14] it is shown that there are infinitely many Salem nunsbef trace—1, with
examples of degreedor everyd > 4. At that time, no examples of trace belewl
were known. We now know (see [5]) that there are infinitely jn&alem numbers of
every trace. In this paper we give a simpler proof that theeeirinitely many Salem
numbers of trace-2, using techniques from [14].

Some examples of Salem numbers of tra@are given in the next section, includ-
ing one of degree only 26. These examples were obtained asimgphical construc-
tion described in [6] (generalising that in [4]), and usingiaterlacing construction
described in [5] (which is greatly generalised in [7]). Bagrobtained in [11] show that
to achieve trace-2 the degree must be at least 18. Further computations, anadin
[14], showed that to achieve traee the degree must be at least 20. This is confirmed
by the computations of Sect. 3. However, we need no longgraelthese computa-
tions, as a direct proof of this is given in Sect. 4. The gapvben 20 and 26 seemed
tantalisingly narrow, and an improved search algorithntaitisd below, was set to work
on degree 20. Luckily for us, we did not need to go up to degdeThere are two
examples at degree 20, and their minimal polynomials arergir Table 1.

Table 1. Minimal polynomials of the Salem numbers of degree 20 anktre?

720427194 718 3717 9716 _ 15715 18714 — 18713 — 16712 — 14711
~13710-142° - 168 - 187" - 1885 - 15° - 97 - 322 + 2+ 2z+1

7204 2719 8717 20716 _ 40715 — 58714 — 74713 — 87712 — 96711
—99710 _ 962 — 878 — 747" — 588 — 4085 — 224 — 88 +22+1

The search in fact found all totally positive algebraic gees of degree 10 and
trace 18. There are just three conjugate sets of these, aindrtimimal polynomials are
displayed in Table 2. The first two of these polynomials yisilem numbers via the
transformatiorx = z+ 1/z+ 2; the third does not, since it has two roots greater than 4.

In [11] a lower bound is given for the absolute trace of tgtgibsitive algebraic
integers. Using all three of the polynomials in Table 2, weeable to improve this bound



Table 2. Minimal polynomials of the totally positive algebraic igers of degree 10 and trace 18

f1(x) = x10— 18x® + 135¢ — 54 4 1320¢ — 19208
1+1662¢* — 813 +206¢ — 24x + 1

fo(x) = x20— 18x® + 134 — 538 4 1273¢ — 18228
+1560¢* — 7666 + 200 — 24x + 1

f3(x) = x10— 18x® + 134 — 537’ 4 1265¢ — 17988
1+1526¢ — 743 + 194 — 24x+ 1

(Sect. 4). The paper then concludes with a speculativeoseati the trace problem for
totally positive algebraic integers.

2 Examples of Salem Numbers of Trace-2

2.1 Examples from Graphs

In [4], Salem numbers were constructed using star-likestréteis known which star-
like trees have exactly one eigenvale- 2, and for any such tree we define- 1 by
v/T+1/4/T=A. Thent is a Salem number, unleiss a rational integer. It was shown
in particular that for any integar > 2, and any integera, ..., &, all at least 2 (and
excluding certain exceptional choices), the only solwitlmthe equation

Al 1
— =1+ 1)
i; -1 z

are a certain Salem number (or perhaps a reciprocal Pisobennits conjugates, and
possibly some roots of unity. The corresponding star-like hasy, . .., a; vertices on
itsr arms.

Applying the method in [3], if one takes= 10, a; = 390,a; = 462,a3 = 1190,
as = 1938,a5 = 1995,a5 = 2090,a7 = 2805,ag = 4641,a9 = 4862, anda o = 5005,
one produces a Salem number of degree 23838 and-track might seem a daunting
task to test a polynomidl(z) of degree 23838 for irreducibility. Luckily we need only
check that no roots of unity are roots bfz), and it is sufficient to test that

ged f(2), f(~2) = ged f(2), f(Z)) = ged f(2), f(-2)) =1 ,

since ifwis a root of unity, themw is conjugate to one of w, w?, —w?.

The degree can be reduced greatly by exploiting other graphisexample, by
adding forks to the ends of some of the branches of a statfies the Salem formula
(1) can be generalised (again with some exclusions) to

LA -1 S Aty 1
=1+=. 2
i; A-1 +121 2i+1 Tz @




Takingr =s=3,a; = 66,a2 = 130,a3 = 238,b; = 255,b, = 273, andbs = 385 in
(2), one obtains a Salem number of trac2 and degree 1278.

For more on producing Salem numbers from graphs, see [6]clitrent record low
degree for a Salem numbemnf trace—2 obtained from graphs is degree 460, with
being a root of

-1 (AB+ynA2-1)  (A+1)2@P-1) 1.1
1T T )@% 1) | D@y 7

2.2 Examples via Interlacing

Let Q(z) andP(z) be relatively prime polynomials with integer coefficierasid with
all their roots on the unit circle. Suppose further tRéz) is monic,Q(z) has positive
leading coefficient, and that the roots®findQ interlace on the unit circle. This last
condition means that as you progress clockwise around thesiucle, you encounter
a zero ofP and a zero ofQ alternately. Finally we suppose that eith#&(fl) = 0, or
Q(1) = 0 and P(1) — Q(1) < 0. Then part of Proposition 4 of [5] states that —
1)P(2) — zQ(2) is the minimal polynomial of a Salem number (or perhaps gorecial
Pisot number), possibly multiplied by a cyclotomic polyriah{i.e., a polynomial all
of whose roots are roots of unity).

In the next section, we use this interlacing constructigoramuce an infinite family
of Salem numbers of trace2. The smallest degree of any member of this family is 38,
with the Salem number being a root of

-1 N 721 n 741 _, 1
(Z2-1)(B-1) (@-1)(Z-1) AHAl-1)A3-1) =~ z°
The current record via interlacing is of degree only 26. Defiolynomials

P(2) = 2%+ 4723+ 9722+ 15221+ 2170+ 26719+ 29718 + 29717 4 2671°
+21715 4 15714 + 8713 — 8711 — 15710 — 217° — 2678 — 297" — 297
—262° -212 1522 - 92— 4z—1 ,

Q(2) = 2224+ 7223+ 14222 + 21721 + 277204 31719+ 3378 + 332!+ 32716
+3175+ 31214+ 31713 4 3142+ 31711 4 3179+ 312% + 3278 + 337/
+338+ 3124274 + 212+ 1422 + 72+ 2 .

ThenP(z) andQ(z) satisfy all the required conditions, and the polynoral-1)P(z) —
zQ(z) (which has trace-2) is in fact irreducible, and is the minimal polynomial of a
Salem number of degree 26. For an explanation of the conigtruaf this remarkable
pair of polynomials, see [7].

2.3 Infinitely Many Examples
For any integep that is coprime to 23-5-7- 11, clearing denominators in the equation

-1 721 111 1

Z-1)@-1) F-)7-1) @-nr-1 ‘7z ®)




gives a polynomial of trace-2. From Proposition 4 of [5], this is the minimal polyno-
mial of a Salem number, possibly multipled a cyclotomic palsnial. We now show
that in fact this polynomial is irreducible for gl > 11 coprime to 23-5-7- 11, giving
infinitely many examples of Salem numbers of trac2 All that is required is to show
that no root of unity satisfies (3).

Puttingy = ZP, (3) readsh(z,y) = 0, where

-1 7?1 yz211 -1 1
"= hE ) F 7D @Dy ‘Tz

We again apply the trick that if a root of unity satisfies (3), then so does one of
—w, W%, —w?. (See [1] for more applications of this idea.) Our restdotonp implies
in particular thatp is odd, and hence-w)P = —wP.

Eliminatingz betweerh(z y) = 0 andh(—z,—y) = 0 yields

(Y +1)%f(y)=0,
wheref (y) has no cyclotomic factors. Eliminatingnstead yields
(Z-Z+1)9(2=0,

whereg(z) has no cyclotomic factors. If both= wandz= —wwere to satisfy (3), then
we would need = wP to be a primitive fourth root of unity, witlo a primitive twelfth
root of unity. It would follow thatp is divisible by 3.

Similarly, eliminating firsty and therz betweerh(z,y) = 0 andh(Z,y?) = 0 yields
that for bothz = w andz = w? to satisfy (3) requires thab is a primitive second,
third, fifth, seventh, or eleventh root of unity, and tiest= 1. It would follow thatp is
divisible by at least one of 2, 3, 5, 7, or 11.

Finally, considerindi(z y) = 0 andh(—2%, —y?) = 0 simultaneously shows that for
bothz= wandz= —w? to satisfy (3) requires that is divisible by 3.

We see that no roots of unity can satisfy (3) provided fhigtprime to 23-5-7-11.
There are infinitely many sugh, giving infinitely many Salem numbers of traee.

3 Totally Positive Algebraic Integers of Given Degree and Tace

3.1 The Old Search Algorithm

For ease of exposition, we consider the search for total§jtive algebraic integers of
degree 10 and trace 18. The algorithm clearly generalisagbitrary degree and trace.
We seek all positive integees, . ..,a;p such that

f(x) = x10— 18+ ap® — agx” + ap® — asx® + agx* — an + agk® — agX+ a1o

has 10 distinct positive real roots. It is extremely diffidok a totally positive algebraic
integer of degree 10 to have trace as small as 18, so havimgl fllisuitables;, nearly
all of the corresponding polynomiafgx) will be reducible.

For 1<i < 10, we letfij(x) be the(10—i)th derivative of f(x). If f(x) has 10
distinct positive roots, then for eac¢hfi(x) will have i distinct positive roots. We find



all possibilities forf(x) by building up from below: we list all values @ such that
f2(x) has 2 distinct positive roots; for each suitabje we list all values ofg such that
fa3(x) has 3 distinct positive roots; and so on. Many of our caneiliér the higher
derivatives off (x) do not survive this lifting process: we frequently find that §ome
fi(x) havingi positive real roots there is no choicea®f ; that maked1(x) havei + 1
positive roots.

Given a candidate fof; (x), havingi distinct positive roots, the technique of Robin-
son [8] (used also in [11]) to find all suitable valuesapf, was to observe that threal
values ofaj;1 such thatfi;1(x) hasi + 1 distinct positive roots form an interval (possi-
bly empty), with endpoints determined by considering thiges of fi 1 (x) at its local
maxima and minima. Although much more efficient than a naneesforce search,
this method requires the computation of the roots of a hugeb@un of polynomials,
using floating-point arithmetic.

3.2 The New Search Algorithm

Our new algorithm still builds ug (x) from its derivatives, as in the previous section.
But the endpoints of the interval faf are determined in a different manner, removing
the need for floating-point arithmetic, and hugely speedtimgsearch.

With notation as in the previous section, we suppose thatave h candidate for
fi(x) havingi distinct positive roots. We wish to identify the (possibigty) range of
values fora;1 such thatfi,1(x) hasi 4 1 distinct positive roots. For ease of notation,
we puta = a;j1. We observe thaD(a), the discriminant offi1(x) (which is a poly-
nomial ina, given that all higher coefficients have been selected)shas at the (real)
endpoints of the desired interval farIn fact all its roots are real: they are the numbers
fi+1(B), wheref is a root off;.

Indeed the required interval is marked by the middle two sawitD(a) (with the
interpretation that iD has odd degree, then we take the middle zero and the one to the
left of it). For whena = a;11 is large and negativdi_1 has either one or two real roots
(depending on the parity d, and asa is increased the number of real roots fpf1
jumps by two as we pass each rooDif). Whena s large and positive, the number of
real roots is either one or none. The only possible intemvathich the number of real
roots can be as large &s 1 is that bounded by the middle two roots. For these roots of
fit+1 all to be positive we require also that> 0.

It might appear that the problem of root-finding has simplgméransferred to a
different polynomial, but note that we only need to find thetsoofD(a) to the nearest
integer. To this end, we take some crude initial approxioregito the middle two roots,
then refine these using Sturm sequences to pin the roots dptire hearest integer.
(The initial approximation that we used was simply to try émelpoints of the previous
interval.) Then a further Sturm sequence computation feangle value ofa;,; in the
interval will reveal whether or nofj 1 has the fulli + 1 real roots forall a;,1 in the
interval. We also requirg;+1 > 0, to ensure that all these roots are positive.

A furtherimprovementis to use non-trivial lower boundsttoea;, based on known
lower bounds for the traces of totally positive algebrategers given in [11]—see also
Sect. 4. This prunes out many hopelégg) with i small.



The full search took 147 hours on a 1.2GHz PC, using PARI/&Ppaoduced three
irreducible polynomials of degree 10, trace 18, with 10idgtpositive roots, as listed
in Table 2. Some 4065 reducible polynomials of degree 10 eatw®t18 were found.
Studying the irreducible factors of this output provides tiecessary information to
find all Salem numbers of tracel and degreec 18, and also confirms that to achieve
degreed and trace< 2d — 2 requiresd > 10 (this also follows from the result of the
next section).

4 Improving the Lower Bound for the Absolute Trace of Totally
Positive Algebraic Integers

In [12] it was shown that all except five conjugate sets oflilpfzositive algebraic inte-
gersa have absolute (also called mean) tra¢e Yy dega) > 1.7719 (t(a) and dega)
being the trace and degree respectively). We can now usétbe hewly discovered
polynomials of degree 10 to improve this bound t@78378> 16/9. The proof em-
ploys the same method as [12]: semi-infinite linear programgris used to produce the
following inequality, valid for allx > 0

x— 5455833645 lofx| — .4958676072lof — 1| — .05892353929 lofx — 2|
—.1846627119l0g — 3x+ 1| — .002613011520l0g? — 4x + 1|
—.008163503307 log® — 4x + 2| —.09063100904 lop® — 5x2 + 6x — 1|
—.01899914258 lox® — 6x° + 9x — 1| —.008696349375 log® — 6x% + 9x — 3|
—.05794447530lofx* — 7x3 + 13x% — 7x+ 1
—.03510719518log* — 7x3 + 14x2 — 8x+ 1
—.008492128216l0g® — 9x* + 28x3 — 35x% + 15x — 1] “)
—.010827752441of° — 9x* + 27x3 — 312 + 12x — 1
—.000890811793010g° — 11x° + 43x* — 72x3 + 51x% — 14x+ 1|
—.005949580568 l0g” — 13x8 + 63x® — 143%* + 158¢ — 80x? 4 16x — 1|
—.00847836865210d1(x)| — 007206449910 logz(x)|
—.01019001634l0f3(x)| > 1.7783786,

where f1(x), f2(x), f3(x) are the three degree 10 polynomials displayed in Table 2.
To prove the existence of the lower boundoty/ dega) > 1.7783786 for a totally
positive nonexceptionat, we substitute fox each conjugate; of a, and average.
Then if the minimal polynomial ofx does not appear in the inequality, we get that
tr(a)/dega) > 1.7783786+ S cclog|R«|, where thec, are positive, and th& are
nonzero integer resultants. Hencgoty/ dega) > 1.7783786, as claimed.

The exceptionalt are those of absolute trace less than7B3786 whose minimal
polynomialdoes appear in the above inequality, namelyaving minimal polynomial
X—1,%2 = 3x+1,x3 = 5x% 4 6x— 1,x* — 7x3+ 13x% — 7x+ 1 orx* — 7x3 + 14x% — 8x+ 1.

Note that, ifd = deg a) and t{a) < 2d — 2 then, as this inequality excludes the five
exceptional polynomials, we must haved}® < tr(a) < 2d — 2, so thatd > 10. This
confirms again the computation at the end of the previousoseand checks too that
there are no totally positive algebraic integers of degraad®trace 16.



5 A Polynomial That Would Solve the Trace Problem

5.1 Background

The trace problem for totally positive algebraic integetalled the “Schur-Siegel-
Smyth trace problem” by Peter Borwein in his very nice redemk [2]), is the fol-
lowing.

Problem1. Fix p < 2. Then show that all but finitely many totally positive algzio
integers have t{p)/degp) > p.

Thus heref is a zero of an irreducible monic polynomial of degree (@gwith
integer coefficients, whose roots are all positive, and \etsesn is t(p).

In 1918 I. Schur [9] solved the problem for< /e = 1.6487. In 1943 C.L. Siegel
[10] solved it forp < 1.737. In [11] (see also [12]) the problem was solved ot
1.7719, while in the previous section we solve it for< 1.7783786. In [13] it was
shown that there was no inequality of the type (4) having aeloloundp for any
p larger than 2- 10-4%. Shortly afterwards J.-P. Serre (personal communicatee,
“Note added in proof” in [13]), showed that there was no susiguality for anyp
larger than 18983021. Here we present possible further evidence aghisgbroblem
being solvable for alp < 2. We prove that the existence of a single polynonfiialith
properties given below would imply that the problem canresblved forp sufficiently
close to 2. The result is, however, highly speculative, a$ saipolynomial may not
exist!

5.2 The Polynomial

Suppose that is a monic polynomial of degree at least 2 with integer coieffits and
all positive distinct roots such that

o [fO)=>2;
e between every pair of distinct roots éfthere is anx with |f(x)| > 2 .

Then we claim that the set of all totally positive algebraitegers contains infinitely
many whose absolute trace is no greater tha tf deq f).

We now prove the claim. Lgt > 2 be primew, a primitive p-th root of unity, and
a = wp + 1/wp, with conjugates;, and letQ be the minimal polynomial ofi. Then

F() =T](f() —ai) =Q(f(x))
|

is a polynomial of degree déf) deg Q) and trace de@)tr(f), and so absolute trace
tr(f)/ded f). Note that, as the; are in(—2,2), it is clear from the graph of that all
the roots ofF are real, positive and distinct. LBtbe any one of them. Theh(3) = q;
for somei, so that the fieldQ(B) contains;, and hence dé@) > %(p— 1). Letm(B)
be the absolute trace 8f Then, taking th¢; to be the representatives of the conjugate
sets of the roots of, we have

tr(F) = S tr(B;) = 5 m(B)) deg(B)
J J



and so

tr(F)/degF) =tr(f)/dedf) = 5 m(Bj)w;
J

where the weightsv; := deg3;)/degF) sum to 1. Hence at least one of thgp;),
m(B(P) say, is at most tif )/ deq f).

Now let p — « through a sequence of primes. Then @8) — o, so that there
must be infinitely many differeri(P). Thus the3(P) give the required algebraic integers.
This proves the claim.

Now we see that if there is ahas above with also tf )/ ded f) < 2, then the trace
problem has no solution when> tr(f)/deq f).

We do not know whether such a polynomfagxists. Any such clearly must have
absolute trace (if )/ ded f) > 1.7783786. Indeed, its absolute trace must be larger than
any lower bound of any inequality (which might be found in thture) of the type (4).
For a monic integral polynomial with all positive roots artusalute trace less than 2,
the crucial quantity is

Mt i=min([fO)], [f(yo)l,[f(y2)l,- -, [T (¥a-2)])

wheren is the degree of,, andyi, Vs, ..., Yn_1 are the roots of . We needV; > 2.

There are many variants on this idea. For exampld, i§ a monic polynomial
of degree at least 3 with integer coefficients such that betvwevery pair of distinct
roots of f there is arx with |f(Xx)/x| > 2, then again one can show that the set of all
totally positive algebraic integers contains infinitelymgg whose absolute trace is no
greater than trf )/ deq f). The argument is entirely similar, but using the polynomial

F () = (F(X) — ix).
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