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Abstract. Until recently, no Salem numbers were known of trace below−1. In
this paper we provide several examples of trace−2, including an explicit infinite
family. We establish that the minimal degree for a Salem number of trace−2 is
20, and exhibit all Salem numbers of degree 20 and trace−2. Indeed there are
just two examples.
We also settle the closely-related question of the minimal degreed of a totally
positive algebraic integer such that its trace is≤ 2d −2. This minimal degree is
10, and there are exactly three conjugate sets of degree 10 and trace 18. Their
minimal polynomials enable us to prove that all except five conjugate sets of
totally positive algebraic integers have absolute trace greater than 16/9.
We end with a speculative section where we prove that, if a single polynomial
with certain properties exists, then the trace problem for totally positive algebraic
integers can be solved.

1 Introduction

A Salem number is a real algebraic integer greater than 1 whose other conjugates all
lie in the closed disc|z| ≤ 1, with at least one on the circle|z| = 1. Here we settle the
question: what is the smallest possible degree for a Salem number of trace−2?

The problem is related to that of finding totally positive algebraic integers of degree
d and trace 2d−2. For suppose that

f (x) = xd − (2d−2)xd−1+ · · ·

is the minimal polynomial of a totally positive algebraic integer. Then we apply the
transformationx = z + 1/z + 2, and clear denominators, to produce a reciprocal poly-
nomial

F(z) = z2d +2z2d+1+ · · ·+2z+1

which is the minimal polynomial of an algebraic integer of degree 2d and trace−2. The
reverse transformation is a little more complicated: inF(z)/zd , replace eachz j + 1/z j



by Tj(x − 2), whereTj is the j-th Chebyshev polynomial, defined byTj(z + 1/z) =
z j + 1/z j. Any roots of f (x) in the interval 0< x < 4 are mapped to pairs of roots of
F(z) on the unit circle. Any roots off (x) in the intervalx > 4 are mapped to pairs
of reciprocal real positive roots ofF(z). We see that the problem of finding all Salem
numbers of degree 2d and trace−2 is equivalent to that of finding all totally positive
algebraic integersθ of degreed and trace 2d −2 such that both (i)θ > 4; and (ii) all
other conjugates ofθ are in the interval 0< x < 4.

The similar problem for trace−1 was settled some time ago: the smallest degree
for a Salem number of trace−1 is 8, and there is just one such Salem number, having
minimal polynomial

z8 + z7− z6−4z5−5z4−4z3− z2 + z+1 .

In [14] it is shown that there are infinitely many Salem numbers of trace−1, with
examples of degree 2d for everyd ≥ 4. At that time, no examples of trace below−1
were known. We now know (see [5]) that there are infinitely many Salem numbers of
every trace. In this paper we give a simpler proof that there are infinitely many Salem
numbers of trace−2, using techniques from [14].

Some examples of Salem numbers of trace−2 are given in the next section, includ-
ing one of degree only 26. These examples were obtained usinga graphical construc-
tion described in [6] (generalising that in [4]), and using an interlacing construction
described in [5] (which is greatly generalised in [7]). Bounds obtained in [11] show that
to achieve trace−2 the degree must be at least 18. Further computations, announced in
[14], showed that to achieve trace−2 the degree must be at least 20. This is confirmed
by the computations of Sect. 3. However, we need no longer rely on these computa-
tions, as a direct proof of this is given in Sect. 4. The gap between 20 and 26 seemed
tantalisingly narrow, and an improved search algorithm, detailed below, was set to work
on degree 20. Luckily for us, we did not need to go up to degree 22! There are two
examples at degree 20, and their minimal polynomials are given in Table 1.

Table 1.Minimal polynomials of the Salem numbers of degree 20 and trace−2

z20+2z19+ z18−3z17−9z16−15z15−18z14−18z13−16z12−14z11

−13z10−14z9−16z8−18z7−18z6−15z5−9z4−3z3 + z2 +2z+1

z20+2z19−8z17−22z16−40z15−58z14−74z13−87z12−96z11

−99z10−96z9−87z8−74z7−58z6−40z5−22z4−8z3 +2z+1

The search in fact found all totally positive algebraic integers of degree 10 and
trace 18. There are just three conjugate sets of these, and their minimal polynomials are
displayed in Table 2. The first two of these polynomials yieldSalem numbers via the
transformationx = z+1/z+2; the third does not, since it has two roots greater than 4.

In [11] a lower bound is given for the absolute trace of totally positive algebraic
integers. Using all three of the polynomials in Table 2, we are able to improve this bound



Table 2.Minimal polynomials of the totally positive algebraic integers of degree 10 and trace 18

f1(x) = x10−18x9 +135x8−549x7 +1320x6 −1920x5

+1662x4−813x3 +206x2−24x+1

f2(x) = x10−18x9 +134x8−538x7 +1273x6 −1822x5

+1560x4−766x3 +200x2−24x+1

f3(x) = x10−18x9 +134x8−537x7 +1265x6 −1798x5

+1526x4−743x3 +194x2−24x+1

(Sect. 4). The paper then concludes with a speculative section on the trace problem for
totally positive algebraic integers.

2 Examples of Salem Numbers of Trace−2

2.1 Examples from Graphs

In [4], Salem numbers were constructed using star-like trees. It is known which star-
like trees have exactly one eigenvalueλ > 2, and for any such tree we defineτ > 1 by√

τ+1/
√

τ = λ. Thenτ is a Salem number, unlessλ is a rational integer. It was shown
in particular that for any integerr ≥ 2, and any integersa1, . . . , ar, all at least 2 (and
excluding certain exceptional choices), the only solutions to the equation

r

∑
i=1

zai−1−1
zai −1

= 1+
1
z

(1)

are a certain Salem number (or perhaps a reciprocal Pisot number), its conjugates, and
possibly some roots of unity. The corresponding star-like tree hasa1, . . . ,ar vertices on
its r arms.

Applying the method in [3], if one takesr = 10, a1 = 390,a2 = 462,a3 = 1190,
a4 = 1938,a5 = 1995,a6 = 2090,a7 = 2805,a8 = 4641,a9 = 4862, anda10 = 5005,
one produces a Salem number of degree 23838 and trace−2. It might seem a daunting
task to test a polynomialf (z) of degree 23838 for irreducibility. Luckily we need only
check that no roots of unity are roots off (z), and it is sufficient to test that

gcd( f (z), f (−z)) = gcd( f (z), f (z2)) = gcd( f (z), f (−z2)) = 1 ,

since ifω is a root of unity, thenω is conjugate to one of−ω, ω2, −ω2.
The degree can be reduced greatly by exploiting other graphs. For example, by

adding forks to the ends of some of the branches of a star-liketree, the Salem formula
(1) can be generalised (again with some exclusions) to

r

∑
i=1

zai−1−1
zai −1

+
s

∑
j=1

zb j−1 +1

zb j +1
= 1+

1
z

. (2)



Taking r = s = 3, a1 = 66, a2 = 130,a3 = 238,b1 = 255,b2 = 273, andb3 = 385 in
(2), one obtains a Salem number of trace−2 and degree 1278.

For more on producing Salem numbers from graphs, see [6]. Thecurrent record low
degree for a Salem numberτ of trace−2 obtained from graphs is degree 460, withτ
being a root of

z69−1
z70−1

+
(z13+1)(z182−1)

(z−1)(z195+1)
+

(z11+1)(z220−1)

(z−1)(z231+1)
= 1+

1
z

.

2.2 Examples via Interlacing

Let Q(z) andP(z) be relatively prime polynomials with integer coefficients,and with
all their roots on the unit circle. Suppose further thatP(z) is monic,Q(z) has positive
leading coefficient, and that the roots ofP andQ interlace on the unit circle. This last
condition means that as you progress clockwise around the unit circle, you encounter
a zero ofP and a zero ofQ alternately. Finally we suppose that eitherP(1) = 0, or
Q(1) = 0 and 2P(1)−Q′(1) < 0. Then part of Proposition 4 of [5] states that(z2 −
1)P(z)− zQ(z) is the minimal polynomial of a Salem number (or perhaps a reciprocal
Pisot number), possibly multiplied by a cyclotomic polynomial (i.e., a polynomial all
of whose roots are roots of unity).

In the next section, we use this interlacing construction toproduce an infinite family
of Salem numbers of trace−2. The smallest degree of any member of this family is 38,
with the Salem number being a root of

z5−1
(z2−1)(z3−1)

+
z12−1

(z5−1)(z7−1)
+

z24−1
(z11−1)(z13−1)

= z− 1
z

.

The current record via interlacing is of degree only 26. Define polynomials

P(z) = z24+4z23+9z22+15z21+21z20+26z19+29z18+29z17+26z16

+21z15+15z14+8z13−8z11−15z10−21z9−26z8−29z7−29z6

−26z5−21z4−15z3−9z2−4z−1 ,

Q(z) = 2z24+7z23+14z22+21z21+27z20+31z19+33z18+33z17+32z16

+31z15+31z14+31z13+31z12+31z11+31z10+31z9+32z8+33z7

+33z6 +31z5+27z4+21z3+14z2+7z+2 .

ThenP(z) andQ(z) satisfy all the required conditions, and the polynomial(z2−1)P(z)−
zQ(z) (which has trace−2) is in fact irreducible, and is the minimal polynomial of a
Salem number of degree 26. For an explanation of the construction of this remarkable
pair of polynomials, see [7].

2.3 Infinitely Many Examples

For any integerp that is coprime to 2·3·5·7·11, clearing denominators in the equation

z5−1
(z2−1)(z3−1)

+
z12−1

(z5−1)(z7−1)
+

zp+11−1
(z11−1)(zp −1)

= z− 1
z

. (3)



gives a polynomial of trace−2. From Proposition 4 of [5], this is the minimal polyno-
mial of a Salem number, possibly multipled a cyclotomic polynomial. We now show
that in fact this polynomial is irreducible for allp > 11 coprime to 2·3·5·7·11, giving
infinitely many examples of Salem numbers of trace−2. All that is required is to show
that no root of unity satisfies (3).

Puttingy = zp, (3) readsh(z,y) = 0, where

h(z,y) =
z5−1

(z2−1)(z3−1)
+

z12−1
(z5−1)(z7−1)

+
yz11−1

(z11−1)(y−1)
− z+

1
z

.

We again apply the trick that if a root of unityω satisfies (3), then so does one of
−ω, ω2, −ω2. (See [1] for more applications of this idea.) Our restriction onp implies
in particular thatp is odd, and hence(−ω)p = −ωp.

Eliminatingz betweenh(z,y) = 0 andh(−z,−y) = 0 yields

(y2 +1)2 f (y) = 0 ,

where f (y) has no cyclotomic factors. Eliminatingy instead yields

(z4− z2 +1)g(z) = 0 ,

whereg(z) has no cyclotomic factors. If bothz = ω andz =−ω were to satisfy (3), then
we would needy = ωp to be a primitive fourth root of unity, withω a primitive twelfth
root of unity. It would follow thatp is divisible by 3.

Similarly, eliminating firsty and thenz betweenh(z,y) = 0 andh(z2,y2) = 0 yields
that for bothz = ω and z = ω2 to satisfy (3) requires thatω is a primitive second,
third, fifth, seventh, or eleventh root of unity, and thatωp = 1. It would follow thatp is
divisible by at least one of 2, 3, 5, 7, or 11.

Finally, consideringh(z,y) = 0 andh(−z2,−y2) = 0 simultaneously shows that for
bothz = ω andz = −ω2 to satisfy (3) requires thatp is divisible by 3.

We see that no roots of unity can satisfy (3) provided thatp is prime to 2·3·5·7·11.
There are infinitely many suchp, giving infinitely many Salem numbers of trace−2.

3 Totally Positive Algebraic Integers of Given Degree and Trace

3.1 The Old Search Algorithm

For ease of exposition, we consider the search for totally positive algebraic integers of
degree 10 and trace 18. The algorithm clearly generalises toarbitrary degree and trace.

We seek all positive integersa2, . . . ,a10 such that

f (x) = x10−18x9+ a2x8−a3x7 + a4x6−a5x5 + a6x4−a7x3 + a8x2−a9x + a10

has 10 distinct positive real roots. It is extremely difficult for a totally positive algebraic
integer of degree 10 to have trace as small as 18, so having found all suitableai, nearly
all of the corresponding polynomialsf (x) will be reducible.

For 1≤ i ≤ 10, we let fi(x) be the(10− i)th derivative of f (x). If f (x) has 10
distinct positive roots, then for eachi, fi(x) will have i distinct positive roots. We find



all possibilities for f (x) by building up from below: we list all values ofa2 such that
f2(x) has 2 distinct positive roots; for each suitablea2, we list all values ofa3 such that
f3(x) has 3 distinct positive roots; and so on. Many of our candidates for the higher
derivatives off (x) do not survive this lifting process: we frequently find that for some
fi(x) havingi positive real roots there is no choice ofai+1 that makesfi+1(x) havei+1
positive roots.

Given a candidate forfi(x), havingi distinct positive roots, the technique of Robin-
son [8] (used also in [11]) to find all suitable values ofai+1 was to observe that thereal
values ofai+1 such thatfi+1(x) hasi+1 distinct positive roots form an interval (possi-
bly empty), with endpoints determined by considering the values of fi+1(x) at its local
maxima and minima. Although much more efficient than a naive brute-force search,
this method requires the computation of the roots of a huge number of polynomials,
using floating-point arithmetic.

3.2 The New Search Algorithm

Our new algorithm still builds upf (x) from its derivatives, as in the previous section.
But the endpoints of the interval forai are determined in a different manner, removing
the need for floating-point arithmetic, and hugely speedingthe search.

With notation as in the previous section, we suppose that we have a candidate for
fi(x) havingi distinct positive roots. We wish to identify the (possibly empty) range of
values forai+1 such thatfi+1(x) hasi + 1 distinct positive roots. For ease of notation,
we puta = ai+1. We observe thatD(a), the discriminant offi+1(x) (which is a poly-
nomial ina, given that all higher coefficients have been selected), vanishes at the (real)
endpoints of the desired interval fora. In fact all its roots are real: they are the numbers
fi+1(β), whereβ is a root of fi.

Indeed the required interval is marked by the middle two roots of D(a) (with the
interpretation that ifD has odd degree, then we take the middle zero and the one to the
left of it). For whena = ai+1 is large and negative,fi+1 has either one or two real roots
(depending on the parity ofi), and asa is increased the number of real roots offi+1

jumps by two as we pass each root ofD(a). Whena is large and positive, the number of
real roots is either one or none. The only possible interval in which the number of real
roots can be as large asi+1 is that bounded by the middle two roots. For these roots of
fi+1 all to be positive we require also thata > 0.

It might appear that the problem of root-finding has simply been transferred to a
different polynomial, but note that we only need to find the roots ofD(a) to the nearest
integer. To this end, we take some crude initial approximations to the middle two roots,
then refine these using Sturm sequences to pin the roots down to the nearest integer.
(The initial approximation that we used was simply to try theendpoints of the previous
interval.) Then a further Sturm sequence computation for asingle value ofai+1 in the
interval will reveal whether or notfi+1 has the fulli + 1 real roots forall ai+1 in the
interval. We also requireai+1 > 0, to ensure that all these roots are positive.

A further improvement is to use non-trivial lower bounds fortheai, based on known
lower bounds for the traces of totally positive algebraic integers given in [11]—see also
Sect. 4. This prunes out many hopelessfi(x) with i small.



The full search took 147 hours on a 1.2GHz PC, using PARI/GP, and produced three
irreducible polynomials of degree 10, trace 18, with 10 distinct positive roots, as listed
in Table 2. Some 4065 reducible polynomials of degree 10 and trace 18 were found.
Studying the irreducible factors of this output provides the necessary information to
find all Salem numbers of trace−1 and degree≤ 18, and also confirms that to achieve
degreed and trace≤ 2d − 2 requiresd ≥ 10 (this also follows from the result of the
next section).

4 Improving the Lower Bound for the Absolute Trace of Totally
Positive Algebraic Integers

In [12] it was shown that all except five conjugate sets of totally positive algebraic inte-
gersα have absolute (also called mean) trace tr(α)/deg(α) > 1.7719 (tr(α) and deg(α)
being the trace and degree respectively). We can now use the three newly discovered
polynomials of degree 10 to improve this bound to 1.778378> 16/9. The proof em-
ploys the same method as [12]: semi-infinite linear programming is used to produce the
following inequality, valid for allx > 0

x− .5455833645log|x|− .4958676072log|x−1|− .05892353929log|x−2|
−.1846627119log|x2−3x +1|− .002613011520log|x2−4x +1|

−.008163503307log|x2−4x +2|− .09063100904log|x3−5x2+6x−1|
−.01899914258log|x3−6x2+9x−1|− .008696349375log|x3−6x2+9x−3|

−.05794447530log|x4−7x3+13x2−7x +1|
−.03510719518log|x4−7x3+14x2−8x +1|

−.008492128216log|x5−9x4+28x3−35x2+15x−1|
−.01082775244log|x5−9x4+27x3−31x2+12x−1|

−.0008908117930log|x6−11x5+43x4−72x3+51x2−14x +1|
−.005949580568log|x7−13x6+63x5−143x4+158x3−80x2+16x−1|

−.008478368652log| f1(x)|− .007206449910log| f2(x)|
−.01019001634log| f3(x)| > 1.7783786,

(4)

where f1(x), f2(x), f3(x) are the three degree 10 polynomials displayed in Table 2.
To prove the existence of the lower bound tr(α)/deg(α) > 1.7783786 for a totally
positive nonexceptionalα, we substitute forx each conjugateα j of α, and average.
Then if the minimal polynomial ofα does not appear in the inequality, we get that
tr(α)/deg(α) > 1.7783786+ ∑ck log|Rk|, where theck are positive, and theRk are
nonzero integer resultants. Hence tr(α)/deg(α) > 1.7783786, as claimed.

The exceptionalα are those of absolute trace less than 1.7783786 whose minimal
polynomialdoes appear in the above inequality, namelyα having minimal polynomial
x−1,x2−3x+1,x3−5x2+6x−1,x4−7x3+13x2−7x+1 orx4−7x3+14x2−8x+1.

Note that, ifd = deg(α) and tr(α)≤ 2d−2 then, as this inequality excludes the five
exceptional polynomials, we must have 16d/9 < tr(α) ≤ 2d −2, so thatd ≥ 10. This
confirms again the computation at the end of the previous section, and checks too that
there are no totally positive algebraic integers of degree 9and trace 16.



5 A Polynomial That Would Solve the Trace Problem

5.1 Background

The trace problem for totally positive algebraic integers (called the “Schur-Siegel-
Smyth trace problem” by Peter Borwein in his very nice recentbook [2]), is the fol-
lowing.

Problem 1. Fix ρ < 2. Then show that all but finitely many totally positive algebraic
integersβ have tr(β)/deg(β) > ρ.

Thus hereβ is a zero of an irreducible monic polynomial of degree deg(β) with
integer coefficients, whose roots are all positive, and whose sum is tr(β).

In 1918 I. Schur [9] solved the problem forρ <
√

e = 1.6487. In 1943 C.L. Siegel
[10] solved it forρ < 1.737. In [11] (see also [12]) the problem was solved forρ <
1.7719, while in the previous section we solve it forρ < 1.7783786. In [13] it was
shown that there was no inequality of the type (4) having a lower boundρ for any
ρ larger than 2− 10−41. Shortly afterwards J.-P. Serre (personal communication,see
“Note added in proof ” in [13]), showed that there was no such inequality for anyρ
larger than 1.8983021. Here we present possible further evidence againstthis problem
being solvable for allρ < 2. We prove that the existence of a single polynomialf with
properties given below would imply that the problem cannot be solved forρ sufficiently
close to 2. The result is, however, highly speculative, as such a polynomial may not
exist!

5.2 The Polynomial

Suppose thatf is a monic polynomial of degree at least 2 with integer coefficients and
all positive distinct roots such that

• | f (0)| ≥ 2 ;
• between every pair of distinct roots off there is anx with | f (x)| ≥ 2 .

Then we claim that the set of all totally positive algebraic integers contains infinitely
manyβ whose absolute trace is no greater than tr( f )/deg( f ).

We now prove the claim. Letp > 2 be prime,ωp a primitive p-th root of unity, and
α = ωp +1/ωp, with conjugatesαi, and letQ be the minimal polynomial ofα. Then

F(x) = ∏
i

( f (x)−αi) = Q( f (x))

is a polynomial of degree deg( f )deg(Q) and trace deg(Q)tr( f ), and so absolute trace
tr( f )/deg( f ). Note that, as theαi are in(−2,2), it is clear from the graph off that all
the roots ofF are real, positive and distinct. Letβ be any one of them. Thenf (β) = αi

for somei, so that the fieldQ(β) containsαi, and hence deg(β) ≥ 1
2(p−1). Let m(β)

be the absolute trace ofβ. Then, taking theβ j to be the representatives of the conjugate
sets of the roots ofF , we have

tr(F) = ∑
j

tr(β j) = ∑
j

m(β j)deg(β j)



and so
tr(F)/deg(F) = tr( f )/deg( f ) = ∑

j
m(β j)w j

where the weightsw j := deg(β j)/deg(F) sum to 1. Hence at least one of them(β j),
m(β(p)) say, is at most tr( f )/deg( f ).

Now let p → ∞ through a sequence of primes. Then deg(β(p)) → ∞, so that there
must be infinitely many differentβ(p). Thus theβ(p) give the required algebraic integers.
This proves the claim.

Now we see that if there is anf as above with also tr( f )/deg( f ) < 2, then the trace
problem has no solution whenρ > tr( f )/deg( f ).

We do not know whether such a polynomialf exists. Any suchf clearly must have
absolute trace tr( f )/deg( f ) > 1.7783786. Indeed, its absolute trace must be larger than
any lower bound of any inequality (which might be found in thefuture) of the type (4).
For a monic integral polynomial with all positive roots and absolute trace less than 2,
the crucial quantity is

M f := min(| f (0)|, | f (γ1)|, | f (γ2)|, . . . , | f (γn−1)|) ,

wheren is the degree off , andγ1,γ2, . . . ,γn−1 are the roots off ′. We needM f ≥ 2.
There are many variants on this idea. For example, iff is a monic polynomial

of degree at least 3 with integer coefficients such that between every pair of distinct
roots of f there is anx with | f (x)/x| ≥ 2, then again one can show that the set of all
totally positive algebraic integers contains infinitely many β whose absolute trace is no
greater than tr( f )/deg( f ). The argument is entirely similar, but using the polynomial
F(x) = ∏( f (x)−αix).
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